Лазерное излучение: защитные очки от воздействия низкоинтенсивного или инфракрасного источника, измеритель его мощности и длина волны

Доброго времени, многим будет интересно разобраться в своем здоровье и близких, и поведую Вам свой опыт, и поговорим мы о Лазерное излучение и его воздействие на человека. Скорее всего какие-то детали могут отличаться, как это было с Вами. Внимание, что всегда нужно консультироваться у узкопрофильных специалистов и не заниматься самолечением. Естественно на самые простые вопросы, можно быстро найти ответ и продиагностировать себя. Пишите свои вопросы/пожелания в комменты, совместными усилиями улучшим и дополним качество предоставляемого материала.

Гениальное предвидение А. Эйнштейна, сделанное им ещё в 1917 году, о возможности индуцированного излучения света атомами, блестяще подтвердилось почти через половину столетия при создании квантовых генераторов советскими физиками Н. Г. Басовым и А. М. Прохоровым. Согласно английской аббревиатуре, это устройство ещё называют лазером, а создаваемое ими излучение — лазерным.

Где мы встречаемся в повседневной жизни с лазерным излучением? В наши дни лазеры получили широкое распространение, — это различные области техники и медицины, а также световые эффекты в эстрадных представлениях и шоу. Красота переливающихся и танцующих лазерных лучей сделала их весьма притягательными для домашних экспериментаторов и производителей лазерных гаджетов. Но как лазерное излучение влияет на здоровье человека?

Чтобы разобраться с этими вопросами необходимо напомнить, что такое лазерное излучение. Для этого «перенесёмся» на урок физики в 10 классе и поговорим о квантах света.

Что такое лазерное излучение

Обычный свет рождается в атомах. Лазерное излучение — так же. Однако при иных физических процессах и в результате воздействия внешнего электромагнитного поля. Поэтому излучение лазера является вынужденным (стимулированным).

Лазерное излучение — это электромагнитные волны, распространяющиеся почти параллельно друг другу. Поэтому луч лазера имеет острую направленность, чрезвычайно малый угол рассеяния и очень значительную интенсивность воздействия на облучаемую поверхность.

В чём же состоит отличие излучения лазера от, например, излучения лампы накаливания? Лампа накаливания — это рукотворный источник света, излучающий электромагнитные волны, в отличие от лазерного излучения, в широком спектральном диапазоне с углом распространения около 360 градусов.

Влияние лазерного излучения на организм человека

Возможность чрезвычайно разнообразного применения квантовых генераторов, побудило специалистов разных областей медицины вплотную заняться воздействием лазерного излучения на организм человека. Было установлено, что этот вид излучения обладает следующими свойствами:

при работе с источниками лазерного излучения повреждающими факторами могут явиться как прямое (из самой установки), так и рассеянное, а также отражённое излучения;

  • степень поражения зависит от параметров электромагнитной волны и локализации облучаемой ткани;
  • поглощаемая этими тканями энергия может вызвать ряд негативных эффектов — тепловой, световой и т. д.
  • Последовательность поражения при биологическом действии лазерного излучения такова:

    • резкое повышение температуры, сопровождаемое ожогом;
    • за этим следует вскипание межтканевой, а также клеточной жидкости;
    • образующийся пар создаёт огромное давление, завершающийся взрывом и ударной волной, которая разрушает окружающие ткани.

    При малых и средних интенсивностях облучения особенно страдают кожные покровы. При более сильном воздействии, повреждения на коже имеют вид отёков, кровоизлияний и омертвевших участков. Зато внутренние ткани претерпевают значительные изменения. Причём наибольшая опасность исходит от прямого и зеркально отражённого излучения. Оно же вызывает патологические изменения в работе важнейших систем организма.

    Особо остановимся на воздействии лазерного излучения на органы зрения.

    Короткие импульсы излучения, генерируемые лазером, вызывают сильное поражение сетчатки, роговицы, радужной оболочки и хрусталика глаза.

    Здесь можно выделить 3 причины.

      За столь короткие промежутки времени длительности импульса (0,1 с) не успевает сработать защитный мигательный рефлекс.

    Кроме того, роговая оболочка и хрусталик глаза — чрезвычайно легко уязвимые органы.

  • Негативный вклад в поражение органов зрения вносит и оптическая система глаза, фокусируя лазерное излучение на глазном дне. Точка лазерного излучения, попавшая на сосудик сетчатки, может закупорить его. Поскольку там нет болевых рецепторов, то и повреждение сетчатки вначале незаметно. Но, когда выжженная лазерным лучом область становится достаточно большой, попавшие на неё изображения предметов исчезают.
  • Характерными симптомами при поражении глаз являются спазмы и отёк век, боль в глазах, помутнение и кровоизлияние сетчатки. После повреждения клетки сетчатки не восстанавливаются.

    Интенсивность излучения, приводящая к повреждению органов зрения, имеет более низкий уровень, чем излучение, вызывающее повреждение кожи. Опасность могут представлять любые инфракрасные лазеры, а также устройства, дающие излучения видимого спектра с мощностью более 5 мвт.

    Зависимость влияния на человека лазерного излучения от его спектра

    Замечательные учёные разных стран, трудившиеся над созданием квантового генератора, не могли и предугадать, какое широкое применения найдёт их детище в различных сферах жизни. Но каждая из этих областей потребует определённых, специфических длин волн.

    Отчего же зависит длина волны лазерного излучения? Она определяется природой, точнее, электронным строением рабочего тела (среды, где генерируется это излучение). Существуют различные твердотельные и газовые лазеры. Эти чудо лучи могут принадлежать к ультрафиолетовому, видимому (чаще красному) и инфракрасному участку спектра. Их диапазон заключён в пределах от 180 нм. и до 30 мкм.

    Характер воздействия лазерного излучения на организм человека во многом зависит от длины волны. Наше зрение примерно в 30 раз более чувствительно к зелёному, чем к красному цвету. Следовательно, мы отреагируем на зелёный лазер быстрее. В этом смысле он безопаснее, чем красный.

    Чтобы разобраться с этими вопросами необходимо напомнить, что такое лазерное излучение. Для этого «перенесёмся» на урок физики в 10 классе и поговорим о квантах света.

    1 Область применения

    Настоящий стандарт распространяется на светофильтры и очки для защиты от излучения лазеров (далее — защитные очки) в диапазоне длин волн от 180 нм до 1000 мкм.

    Настоящий стандарт устанавливает общие технические требования и методы испытаний защитных очков.

    Руководство по применению очков для защиты от лазерного излучения приведено в приложении А.

    Исходные положения, используемые в настоящем стандарте, приведены в приложении В.

    Настоящий стандарт не распространяется на защитные очки, применяемые для юстировки лазеров и лазерных устройств. Требования к ним установлены в ГОСТ EN 208.

    Примечание — Прежде чем выбрать светофильтр, отвечающий требованиям настоящего стандарта, следует провести анализ риска согласно приложению А.

    2 Нормативные ссылки

    В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты*:
    ________________
    * Таблицу соответствия национальных стандартов международным см. по ссылке. — Примечание изготовителя базы данных.

    Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

    4.1 Требования к спектральному коэффициенту пропускания светофильтров и защитных очков

    Спектральный коэффициент пропускания защитных очков для различных степеней защиты от лазерного излучения не должен превышать максимальный спектральный коэффициент пропускания, приведенный в таблице 1, при испытании по 5.2 на длине волны и/или длинах волн, на которой и/или которых светофильтры и защитные очки осуществляют защиту от лазерного излучения.

    ГОСТ 12.4.308-2016 (EN 207:2009)

    Система стандартов безопасности труда

    СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ГЛАЗ. ОЧКИ ДЛЯ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

    Общие технические требования и методы испытаний

    Occupational safety standards system. Personal eye-protection. Laser eye-protectors. General technical requirements and test methods

    Краткое наименование страны по МК (ИСО 3166) 004-97

    Защитные очки для лазера EP-1A

    Защитные очки EaglePair для работы с лазером длиной волны 190-540 нм и 900-1700 нм. Этот диа..

    Рекомендуем прочесть:  Обработка после установки пессария

    Защитные очки для лазера IPL-2

    Защитные очки EaglePair для работы с лазером в косметологических целях. Эти очки захватывают очень ш..

    Защитные очки для лазера EP-3

    Защитные очки EaglePair для работы с лазером длиной волны 190-540 нм. Этот диапазон захватыв..

    Защитные очки для лазера EP-1

    Защитные очки EaglePair для работы с лазером длиной волны 190-540 нм и 800-1700 нм. Этот диа..

    Защитные очки EaglePair для работы с лазером длиной волны 520-590 нм. Этот диапазон захватыв..

    Лазеры получили широкое применение в научных исследованиях (физика, химия, биология и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (связи, локации, измерительная техника, география), при исследовании внутренней структуры вещества, промышленности при сварке тугоплавких металлов.

    Лазер — это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Лазерная установка включает активную (лазерную) среду, расположенную между зеркалами, образующими оптический резонатор, источник энергии ее возбуждения и, как правило, систему охлаждения.Активной средой лазера может быть твердый материал (рубины, стекло), полупроводники (Zn, S), жидкость (с редкоземельными активаторами или органическими красителями), газ (He, CO2 и др.). При работе с источниками лазерных излучений (ЛИ) персонал может подвергаться воздействию излучения высокой интенсивности в ультрафиолетовом, видимом и инфракрасном диапазонах, воздействию рентгеновского и радиочастотного излучений, воздействию высокого электрического напряжения, а также загазованности и запыленности воздуха при обработке лазерным лучом синтетических материалов. Однако основным поражающим фактором является интенсивность лазерного излучения — прямого, отраженного и рассеянного. Лазерное излучение может генерироваться в диапазоне длин волн от 0,2 до 1000 мкм, который разбить на следующие области спектра:

    — ультрафиолетовая – от 0,2 до 0,4 мкм;

    — видимая – от 0,4 до 0,75 мкм;

    — ближняя инфракрасная – от 0,75 до 1,4 мкм;

    — дальняя инфракрасная – более 1,4 мкм.

    Биологические эффекты ЛИ делятся на две группы: первичные, возникающие в результате термического воздействия, – органические изменения в облучаемых тканях, и вторичные, возникающие в результате нетеплового воздействия на весь организм (функциональные нарушения в центральной нервной системе, сердечно–сосудистой системе и др.). Лазерное излучение представляет опасность главным образом для тканей, которые непосредственно поглощают излучение, поэтому с позиций потенциальной опасности воздействия и возможности защиты от лазерного излучения рассматривают в основном глаза и кожу.

    К лазерам I класса (безопасные) относятся полностью безопасные лазеры, то есть такие лазеры, выходное прямое излучение которых не представляет опасности при облучении глаз и кожи. Лазеры II класса (малоопасные) – это лазеры, выходное излучение которых представляет опасность при облучении кожи или глаз человека только прямым излучением.

    К лазерам III класса (опасные) относятся лазеры, выходное излучение которых представляет опасность при облучении глаз прямым и диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности и при облучении кожи только прямым излучением. Этот класс распространяется только на лазеры, генерирующие излучение с длиной волны от 0,4 до 1,4 мкм.

    IV класс (высокоопасные) включает такие лазеры, диффузно отраженное излучение, которых представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности.

    Гигиеническое нормирование лазерного излучения осуществляется по СанПиН 5804-91 «Санитарные нормы и правила стр-ва и эксплуатации лазеров». Нормируемыми параметрами являются энергетическая экспозиция (Н, Дж/см 2 – отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка, т.е. плотность потока энергии). Значение ПДУ различаются в зависимости от длины волны ЛИ, длительности одиночного импульса, частоты следования импульсов излучения, длительности воздействия. Установлены различные уровни для глаз и кожи.

    Защита от ЛИ осуществляется организационно-техническими, санитарно-гигиеническими и лечебно-профилактическими методами:1 выбор, планировка и внутренняя отделка помещений; рациональное размещение лазерных установок и порядок их обслуживания. 2 и 3 контроль за уровнями вредных и опасных факторов на рабочих местах; контроль за прохождением персоналом предварительных и периодических медицинских осмотров. СИЗ: защитные очки, щитки, маски и др. СКЗ должны предусматриваться на стадии проектирования и монтажа лазеров, при организации рабочих мест, при выборе эксплуатационных параметров

    29. Средства индивидуальной защиты. Классификация. Личная гигиена на производстве.

    Средства индивидуальной защиты (СИЗ) применяется в тех случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов, архитектурно-планировочным решением и средствами коллективной защиты.

    Целью применения любого СИЗ является снижение до допустимых значений или полное предотвращение влияния опасных и вредных производственных факторов на человека.

    Вопросы обязательного обеспечения работников СИЗ регламентируются Трудовым кодексом РФ (ст. 221), «Правилами обеспечения работников специальной одеждой, специальной обувью и другими средствами индивидуальной защиты», государственными стандартами системы ССБТ, рядом постановлений Минтруда России и приказов Минздравсоцразвития России об утверждении «Типовых отраслевых норм бесплатной выдачи работникам сертифицированной специальной одежды, специальной обуви и других средств индивидуальной защиты» для всех отраслей экономики (1997–2006 годах).

    Эффективность и качество СИЗ должны быть подтверждены сертификатом соответствия.

    КЛАССИФИКАЦИЯ СИЗ. В соответствии с ГОСТ 12.4.011-89 ССБТ. «Средства защиты работающих. Общие требования и классификация» средства индивидуальной защиты в зависимости от назначения подразделяются на следующие классы:

    • одежда специальная защитная (комбинезоны, полукомбинезоны, куртки, брюки, тулупы, халаты, пальто, полупальто, полушубки, накидки, плащи, полуплащи, рубашки, шорты, жилеты, платья, сарафаны, блузки, юбки, напыльники, фартуки);

    • средства защиты ног (сапоги, полусапоги, ботинки, полуботинки, туфли, галоши, боты, бахилы, портянки), в том числе от вибрации и действия электротока;

    • средства защиты рук (рукавицы, перчатки, наладонники, напальчники, напульсники, нарукавники, налокотники), в том числе дерматологические средства (пасты, мази, кремы);

    • средства защиты головы (каски, шлемы, подшлемники, шапки, береты, шляпы, колпаки, косынки, накомарники);

    • средства защиты лица (щитки защитные лицевые);

    • средства защиты глаз (очки защитные);

    • средства защиты органов слуха (противошумовые шлемы, наушники, вкладыши);

    • средства защиты органов дыхания (противогазы, респираторы, самоспасатели, пневмошлемы, пневмокаски, пневмокуртки);

    • костюмы изолирующие (пневмокостюмы, гидроизолирующие костюмы, скафандры);

    • средства защиты от падения с высоты (предохранительные пояса, тросы, ловители и др.);

    • средства дерматологические защитные (защитные, очистители кожи, репаративные средства);

    Вы нашли ответ на свой вопрос?
    Да, спасибо за информацию.
    71.88%
    Еще нет, почитаю.
    21.88%
    Да, но проконсультируюсь со специалистом.
    6.25%
    Проголосовало: 128

    • средства защиты комплексные (единые конструктивные устройства, обеспечивающие защиту двух и более органов – дыхания, зрения, слуха, а также лица и головы).

    Кроме того, СИЗ могут быть универсальными. В этом случае они обеспечивают защиту от всех или основных вредных и опасных факторов (например, СИЗ органов дыхания, защищающие от всех видов пыли).

    Средства индивидуальной защиты, предназначенные для конкретных условий труда или профессии, называют специальными (спецодежда для шахтеров, геологов, лесорубов и т.п.).

    Не относится к СИЗ форменная и корпоративная одежда, которой обеспечиваются работники в некоторых фирмах.

    30. Санитарно-гигиенические требования к планировке предприятия и организации производства.

    Общие требования к размещению предприятия и планировке его территории содержится в действующем своде правил СП 18.13330.2011 «Генеральные планы промышленных предприятий» и СНиП 2.09.04-87* «АДМИНИСТРАТИВНЫЕ И БЫТОВЫЕ ЗДАНИЯ».

    Планировка включает надлежащее размещение зданий, сооружений и путей внутризаводского транспорта на территории предприятия, рациональную организацию рабочих мест, необходимость обеспечения работающих санитарно-бытовыми помещениями, средствами коллективной и индивидуальной защиты и т.д.

    Планировка производственных зданий, помещений и сооружений должно осуществляться так, чтобы персонал, не занятый обслуживанием технологических процессов и оборудования, не подвергался воздействию вредных факторов выше нормируемых параметров.

    При проектировании производств с возможным выделением вредных веществ 1-го и 2-го классов опасности остронаправленного действия внутри помещений следует предусматривать устройство изолированных кабин, помещений или операторских зон с оптимальными условиями труда для дистанционного управления оборудованием.

    Проектирование безоконных и бесфонарных зданий, а также размещение производственных помещений с постоянными рабочими местами в подвальных и цокольных этажах с недостаточным естественным освещением должно осуществляться в соответствии с действующими нормативными документами.

    При размещении технологического, энергетического, санитарно-технического оборудования на открытых площадях необходимо предусматривать помещения для размещения пультов управления этим оборудованием, а также помещения для обогрева работающих.

    Рекомендуем прочесть:  Изучаем правильный способ замачивания грибов в воде с солью для их идеальной приготовки

    Планировка наружных ограждений отапливаемых производственных помещений должно исключать возможность образования конденсата на внутренней поверхности стен и потолков.

    При планировке новых и реконструкции существующих ЗиС должны предусматриваться мероприятия, направленные на уменьшение поступления избыточного тепла или холода в рабочую зону.

    При планировке помещений для работы с источниками ЭМП радиочастотного диапазона необходимо предусматривать их изоляцию от других производственных помещений.

    При планировке и реконструкции действующих производственных объектов, где располагаются источники шума, необходимо предусматривать архитектурно-строительные мероприятия, направленные на снижение до допустимых уровней шума внутри помещений на рабочих местах, а также на территории пром. площадок.

    Проектная документация в соответствии с требованиями законодательства проходит несколько видов экспертиз, в том числе экспертизу условий труда. Вопросы создания и обеспечения безопасных условий труда для работающих освещаются в разделе проекта «Управление производством, предприятием и организация условий и охраны труда рабочих и служащих».

    Проектная документация в случаях, определенных Федеральным законом «О промышленной безопасности опасных производственных объектов» подлежит экспертизе промышленной безопасности.

    Организация производства осуществляется согласно СП 2.2.2.1327-03 «Гигиенические требования к организации технологических процессов, производственному оборудованию и рабочему инструменту». Под санитарно-гигиеническими требованиями организации производства понимается система санитарно-технических, гигиенических и организационных мероприятий и средств, предотвращающих воздействие на людей вредных производственных факторов. В этих целях по установленным нормам должны быть оборудованы санитарно-бытовые помещения для приёма пищи, оказания медицинской помощи, комнаты для отдыха. Для соблюдения санитарно-гигиенических требований необходим контроль за следующими параметрами: световая среда, микроклимат, производственный шум, ЭМП и т. д.

    Средства индивидуальной защиты, предназначенные для конкретных условий труда или профессии, называют специальными (спецодежда для шахтеров, геологов, лесорубов и т.п.).

    Ранее мы рассмотрели, как развиваются лазерные технологии, какое лазерное оружие может быть создано для применения в интересах военно-воздушных сил, сухопутных войск и ПВО, военно-морского флота.

    Теперь надо понять, можно ли от него защититься, и как. Часто раздаются высказывания о том, что достаточно покрыть ракету зеркальным покрытием или отполировать снаряд, но к сожалению, всё не так просто.

    Обычное зеркало с алюминиевым покрытием отражает примерно 95% падающего излучения, причём его эффективность сильно зависит от длины волны.

    Из всех материалов, показанных на графике, самый высокий коэффициент отражения у алюминия, который отнюдь не является тугоплавким материалом. Если при облучении маломощным излучением зеркало будет нагреваться незначительно, то при попадании мощного излучения материал зеркального покрытия быстро придёт в негодность, что приведёт к ухудшению его отражающих свойств и дальнейшему лавинообразному нагреву и разрушению.

    При длине волны менее 200 нм эффективность зеркал резко падает, т.е. от ультрафиолетового или рентгеновского излучения (лазер на свободных электронах) такая защита не будет работать вообще.

    Существуют экспериментальные искусственные материалы со 100%-ным отражением, но они работают только для определённой длины волны. Также зеркала могут покрываться специальными многослойными покрытиями, увеличивающими их отражающие способности до 99.999%. Но и этот метод работает только для одной длины волны, причём падающей под определённым углом.

    Не стоит забывать о том, что условия эксплуатации вооружений далеки от лабораторных, т.е. зеркальную ракету или снаряд надо будет хранить в контейнере, заполненном инертным газом. Малейшее помутнение или пятно, например, от отпечатков рук, сразу ухудшат отражающую способность зеркала.

    Выход из контейнера сразу подвергнет зеркальную поверхность воздействию окружающей среды – атмосферы и теплового воздействия. Если зеркальная поверхность не будет покрыта защитной плёнкой, то это сразу приведёт к ухудшению её отражающих свойств, а если её покрыть защитным напылением, то оно само будет ухудшать отражающие свойства поверхности.

    Резюмируя вышесказанное, отметим: зеркальная защита не очень хорошо подходит для защиты от лазерного оружия. А что тогда подходит?

    В какой-то степени поможет способ «размазывания» тепловой энергии лазерного луча по корпусу путем обеспечения вращательного движения летательного аппарата (ЛА), вокруг собственной продольной оси. Но этот способ подходит лишь для боеприпасов и в ограниченной степени для беспилотных летательных аппаратов (БПЛА), в меньшей степени он будет эффективен при облучении лазером в переднюю часть корпуса.

    На некоторые типах защищаемых объектов, например, на планирующих авиабомбах, крылатых ракетах (КР), или противотанковых управляемых ракетах (ПТУР), атакующих цель при пролёте сверху, такой способ также применить не удастся. Невращающимися, по большей части, являются миномётные мины. Сложно собрать данные по всем невращающимся ЛА, но уверен, что их очень много.

    В любом случае, вращение ЛА лишь незначительно снизит влияние лазерного излучения на цель, т.к. тепло, передаваемое мощным лазерным излучением корпусу будет передаваться на внутренние конструкции и далее по всем компонентам летательного аппарата.

    Применение дымов и аэрозолей в качестве мер по противодействию лазерному оружию также имеет ограниченные возможности. Как уже говорилось в статьях серии, применение лазеров против наземной бронированной техники или кораблей возможно только при использовании против средств наблюдения, к защите которых мы ещё вернёмся. Прожечь корпус БМП/танка или надводного корабля лазерным лучом в обозримой перспективе нереально.

    Разумеется, невозможно применить дымовую или аэрозольную защиту против ЛА. Из-за высокой скорости ЛА дым или аэрозоль всегда будут сдуваться назад встречным напором воздуха, у вертолётов их будет сдувать воздушный поток от винта.

    Таким образом, защита от лазерного оружия в виде распыляемых дымов и аэрозолей может потребоваться лишь на легкобронированной технике. С другой стороны, танки и другая бронетехника зачастую и так оснащаются штатными системами постановки дымовых завес для срыва захвата комплексов вооружения противника, и в этом случае, при разработке соответствующих наполнителей, они могут применяться и для противодействия лазерному оружию.

    Возвращаясь к защите оптических и тепловизионных средств разведки, можно предположить, что установка оптических фильтров, препятствующих прохождению лазерного излучения определённой длины волны, подойдёт только на начальном этапе для защиты от маломощного лазерного оружия, по следующим причинам:

    — на вооружении будет стоять большая номенклатура лазеров различных производителей, работающих на разных длинах волн;

    — фильтр, предназначенный для поглощения или отражения определённой длины волны, при воздействии мощного излучения скорее всего выйдет из строя, что приведёт либо к попаданию лазерного излучения на чувствительные элементы, либо выходу из строя самой оптики (помутнение, искажение изображения);

    — некоторые лазеры, в частности, лазер на свободных электронах, могут изменять рабочую длину волны в широком диапазоне.

    Защита оптических и тепловизионных средств разведки может осуществляться для наземной техники, кораблей и авиационной техники, путём установки защитных экранов с высоким быстродействием. В случае обнаружения лазерного излучения защитный экран за доли секунды должен закрыть объективы, но даже это не гарантирует отсутствие повреждений чувствительных элементов. Возможно, что широкое распространение лазерного оружия со временем потребует, как минимум дублирования средств разведки, работающих в оптическом диапазоне.

    Если на крупных носителях установка защитных экранов и дублирующих средств оптической и тепловизионной разведки вполне реализуема, то на высокоточном оружии, особенно компактных размеров, это сделать гораздо сложнее. Во-первых, существенно ужесточаются массогабаритные требования к защите, во-вторых, воздействие лазерного излучения высокой мощности даже при закрытой заслонке, может вызвать, перегрев компонент оптической системы из-за плотной компоновки, что приведёт к частичному или полному нарушению её работы.

    Какими же способами можно эффективно защитить технику и вооружение от лазерного оружия? Основных способов два – это абляционная защита и конструктивная теплоизолирующая защита.

    Абляционная защита (от латинского ablatio – отнятие, унос массы) основана на уносе вещества с поверхности защищаемого объекта потоком горячего газа и/или на перестройке пограничного слоя, что в совокупности значительно уменьшает теплопередачу к защищаемой поверхности. Иными словами, поступающая энергия тратится на нагрев, расплав, и испарение защищающего материала.

    В настоящий момент абляционная защита активно используется в спускаемых модулях космических аппаратов (КА) и в соплах реактивных двигателей. Наибольшее применение получили обугливающиеся пластмассы на основе фенольных, кремнийорганических и других синтетических смол, содержащих в качестве наполнителей углерод (в том числе графит), двуокись кремния (кремнезем, кварц), найлон.

    Абляционная защита – одноразовая, тяжелая и объёмная, поэтому использовать её на летательных аппаратах многоразового использования (читай не всех пилотируемых, и большей части беспилотных ЛА) нет смысла. Единственное её применение – это на управляемых и неуправляемых снарядах. И здесь основной вопрос в том, какой толщины должна быть защита для лазера мощностью, например, 100 кВт, 300 кВт и т.д.

    Рекомендуем прочесть:  Как научить ребенка азам вежливости?

    На космическом корабле «Аполлон» толщина защиты лежит в диапазоне от 8 до 44 мм для температур от нескольких сотен до нескольких тысяч градусов. Где-то в этом диапазоне будет лежать и потребная толщина абляционной защиты от боевых лазеров. Легко представить, как она повлияет на массогабаритные характеристики, а, следовательно, и на дальность, маневренность, массу боевой части (БЧ) и другие параметры боеприпаса. Абляционная теплозащита также должна выдерживать перегрузки при запуске и маневрировании, соответствовать нормам сроков и условий хранения боеприпасов.

    Под вопросом находятся неуправляемые боеприпасы, поскольку неравномерное разрушение абляционной защиты от лазерного излучения может изменить внешнюю баллистику, вследствие чего боеприпас отклонится от цели. Если абляционная защита уже где-то применяется, например, в гиперзвуковых боеприпасах, то придётся наращивать её толщину.

    Другой способ защиты – конструктивное покрытие или исполнение корпуса несколькими защитными слоями из тугоплавких материалов, устойчивых к внешним воздействиям.

    Если проводить аналогию с космическими аппаратами, то можно рассмотреть тепловую защиту многоразового КА «Буран». На участках, где температура поверхности составляет 371 – 1260 градусов Цельсия, применялось покрытие, состоящее из аморфного кварцевого волокна 99,7 %-ной чистоты, к которому добавляется связующее – коллоидная двуокись кремния. Покрытие изготавливается в виде плиток двух типоразмеров толщиной от 5 до 64 мм.

    На внешнюю поверхность плиток наносится боросиликатное стекло, содержащее специальный пигмент (белое покрытие на основе окиси кремния и блестящей окиси алюминия), для получения малого коэффициента поглощения солнечной радиации и высокого коэффициента излучения. На носовом обтекателе и носках крыла аппарата, где температуры превышают 1260 градусов, применялась абляционная защита.

    Необходимо учитывать, что при длительной эксплуатации может быть нарушена защита плиток от влаги, что приведёт к утрате теплозащитой своих свойств, поэтому она не может напрямую быть использована в качестве противолазерной защиты на многоразовых ЛА.

    В настоящий момент разрабатывается перспективная абляционная теплозащита с минимальным износом поверхности, обеспечивающая защиту летательных аппаратов от температуры до 3000 градусов.

    Группа учёных из Института Ройса при Университете Манчестера (Великобритания) и Центрального южного университета (Китай) разработала новый материал с улучшенными характеристиками, который без структурных изменений выдерживает температуру до 3000°C. Это керамическое покрытие Zr0.8Ti0.2C0.74B0.26, которое накладывается на матрицу углерод-углеродного композита. По своим характеристикам новое покрытие значительно превосходит самую лучшую высокотемпературную керамику.

    Химическая структура термостойкой керамики сама по себе выполняет роль защитного механизма. При температуре 2000°C материалы Zr0.8Ti0.2C0.74B0.26 и SiC окисляются и превращаются в Zr0.80T0.20O2, B2O3 и SiO2, соответственно. Zr0.80Ti0.20O2 частично расплавляется и формирует относительно плотный слой, а оксиды с низкой температурой плавления SiO2 и B2O3 испаряются. При более высокой температуре 2500°C кристаллы Zr0.80Ti0.20O2 сплавляются в более крупные образования. При температуре 3000°C формируется почти абсолютно плотный внешний слой, в основном состоящий из Zr0.80Ti0.20O2, титаната циркония и SiO2.

    В мире ведутся разработки и специальных покрытий, предназначенных для защиты от лазерного излучения.

    Представитель Народно-освободительной армии Китая еще в 2014 году заявлял, что американские лазеры не представляют особой опасности для китайской военной техники, обшитой специальным защитным слоем. Остаются только вопросы, от лазеров какой мощности, защищает это покрытие, и какую имеет толщину и массу.

    Наибольший интерес представляет покрытие, разработанное американскими исследователями из Национального института стандартов и технологий и университета Канзаса – аэрозольный состав на основе смеси углеродных нанотрубок и специальной керамики, способный эффективно поглощать свет лазеров. Нанотрубки нового материала однородно поглощают свет и передают тепло в близлежащие области, снижая температуру в точке контакта с лучом лазера. Керамические высокотемпературные соединения обеспечивают защитному покрытию высокую механическую прочность и стойкость по отношению к разрушениям от высокой температуры.

    В процессе испытаний тонкий слой материала нанесли на поверхность меди и после высыхания сфокусировали на поверхности материала луч длинноволнового инфракрасного лазера, лазера, который используется для резки металла и других твердых материалов.

    Анализ собранных данных показал, что покрытие успешно поглотило 97.5 процентов энергии луча лазера и без разрушения выдержало уровень энергии в 15 кВт на квадратный сантиметр поверхности.

    По данному покрытию возникает вопрос: на испытаниях защитное покрытие было нанесено на медную поверхность, которая сама по себе является одной из самых сложных материалов для обработки лазером, из-за её высокой теплопроводности, неясно как оно поведёт себя такое защитное покрытие с другими материалами. Также возникают вопросы о её максимальной температурной стойкости, стойкости к вибрационно-ударным нагрузкам, воздействию атмосферных условий и ультрафиолета (солнце). Не указано время, в течении которого проводилось облучение.

    Ещё один интересный момент: если двигатели ЛА также будут покрыты веществом с высокой теплопроводностью, то от них равномерно будет нагрет весь корпус, что максимально демаскирует ЛА в тепловом спектре.

    В любом случае, характеристики вышеуказанной аэрозольной защиты будут находиться в прямой зависимости с размерами защищаемого объекта. Чем больше защищаемый объект и площадь покрытия, тем больше энергии может быть рассеяно по площади и отдано в виде теплового излучения и охлаждения набегающим потоком воздуха. Чем меньше защищаемый объект, тем толще придётся делать защиту, т.к. малая площадь не позволит отвести достаточно тепла и будут перегреты внутренние конструктивные элементы.

    Применение защиты от лазерного излучения, неважно абляционной или конструктивной теплоизолирующей, может переломить тенденцию к уменьшению размеров управляемых боеприпасов, существенно уменьшить эффективность как управляемых, так и не управляемых боеприпасов.

    Все несущие поверхности и органы управления – крылья, стабилизаторы, рули, придётся делать из дорогих и сложно обрабатываемых тугоплавких материалов.

    Отдельно возникает вопрос по защите радиолокационных средств обнаружения. На экспериментальном космическом аппарате «БОР-5» испытывалась радиопрозрачная теплозащита – стеклопластик с кремнеземным наполнителем, но её теплозащитные и массогабаритные характеристики мне найти не удалось.

    Пока неясно, может ли в результате облучения мощным лазерным излучением обтекателя радиолокационных средств разведки, пусть и с защитой от теплового излучения, возникнуть высокотемпературное плазменное образование, препятствующее прохождению радиоволн, вследствие чего цель может быть потеряна.

    Для защиты корпуса возможно будет применяться комбинация нескольких защитных слоёв – теплостойкий-малотеплопроводный изнутри и отражающий-теплостойкий-высокотеплопроводный снаружи. Также возможно, что поверх защиты от лазерного излучения, будут наноситься материалы для обеспечения малозаметности, которые не смогут противостоять лазерному излучению, и должны будут восстанавливаться после получения повреждений от лазерного оружия в случае, если сам ЛА выжил.

    Можно предположить, что совершенствование и широкое распространение лазерного оружия, потребуют обеспечения противолазерной защитой всех имеющихся боеприпасов, как управляемых, так и неуправляемых, а также пилотируемых и беспилотных летательных аппаратов.

    Внедрение противолазерной защиты неизбежно приведёт к росту стоимости и массогабаритных характеристик управляемых и неуправляемых боеприпасов, а также пилотируемых и беспилотных летательных аппаратов.

    В заключение можно упомянуть об одном из разрабатывающихся способов активного противодействия лазерной атаке. Компания Adsys Controls, расположенная в Калифорнии, разрабатывает защитную систему Helios, которая должна сбивать наведение лазера противника.

    При наведении боевого лазера противника на защищаемый аппарат Helios определяет его параметры: мощность, длину волны, частоту импульсов, направление и дальность до источника. В дальнейшем Helios мешает лазерному лучу противника фокусироваться на цели, предположительно путём наведения встречного низкоэнергетического лазерного луча, который сбивает с толку систему наведения противника. Детальные характеристики системы Helios, стадия её разработки и её практическая работоспособность пока неизвестны.

    Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

    В любом случае, вращение ЛА лишь незначительно снизит влияние лазерного излучения на цель, т.к. тепло, передаваемое мощным лазерным излучением корпусу будет передаваться на внутренние конструкции и далее по всем компонентам летательного аппарата.

    Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

    Оцените статью
    Все о здоровье и методах их лечения